Managing High-Bandwidth Real-Time Data
Storage

David Bigelow, Scott Brandt, John Bent, HB Chen

Data Capture at High Speeds

= Problem: Temporary storage of “lots” of data
Example: Astronomical observations
Example: Network traffic capture
« Trivial Example: TiVo

s Most data is worthless over the long run
s There’s too much of it to go into permanent storage

= But sometimes the data is actually worthwhile

...and so were the last ten minutes of it, but you didn’t know that
until just now

= Need a system that can address these problems

Motivating Project: Long Wavelength
Array

» Low Frequency Radio Telescope
s Geographically distributed but synchronized
= Most collected data is just noise

= Basic Statistics:
« 53 stations (initially)
« 400 km base line
« 580 Mbit/sec data rate
« ~30 Gbit/sec total

il . i

Requirements

= Quality of Service Guarantees

* Incoming data must be recorded on the first (and only)
transmission at a set bandwidth

« There needs to be a mechanism to read data back off as well

= Reliability
- Data cannot be regenerated and thus must not be lost
« QoS must be maintained in the face of hardware failure

= Infrastructure
- Efficient use of commodity hardware
« Must be able to run in a desert shack
« Scale to hundreds or thousands of units

Right: Locations of LWA stations
over southwestern New Mexico

Our Solution: Ring Buffer

s Fixed Size
« Allows “X” time units of storage
* Very little bookkeeping required

= Limited Lifetime

- Data is quickly overwritten if not
specifically preserved

* No “cleaning up” needed

= Limited Indexing/Metadata

« Only a small amount of primary

Saved Data

e

New Data

<«— New Data Start
Point

Current Write/ {
Position

indexing is needed, and =

traditional metadata is barely Va

needed at all Saved Data =
Old Data g

Data Stream

A New Filesystem

= Many standard filesystem features useless
* No need for file creation, deletion, stat, etc.
Only ever one writer (though there may be several readers)
« Most metadata is useless
* Indexing is vastly simplified

= All operations done on large blocks
« Aggregated writes for maximal I/O performance
- Fragmentation problems minimized

= File system never “shuts down”
 No need to maintain an on-disk index
 Disk head movement at a minimum
« Can reconstruct index again at startup, but time is not critical

Big Data

i I NN ENENENEENEEENEN
Y)

One data chunk

s Basic indexing: one data chunk, one ID
- Easily maintained in main memory with big enough chunk size

s Fixed size: never need to think about “sub-chunks”
- Always read and write on fixed-sized chunks of data

= Simple parameterization

« Configuring such a setup requires only the chunk size and ID
information

Small Data

lde I NN ENEEEEEEEENEE

One data chunk has lots of individual
pieces of information

= Full index cannot be kept in main memory
« Need to store secondary indexing information on disk

= Variable size
« Minor internal fragmentation
- Might want smaller portions of data read or preserved

x Complex parameterization
« Multiple things to index on

Prototype and Testing

= Prototype System: Mahanaxar
« Currently runs on single hard drives for both big and small data

= Primary comparison: flat file system (ext2)
 [Initial testing on several different filesystems
« ext2 has slightly better performance

= Database comparisons show very poor performance

* As the system ages at 99.9%+ capacity, database speed
collapses

= Performance testing over several hard drives yielded
similar data

* For these results, one particular hard drive is used for all
comparisons (a 1.5 TB Western Digital SATA drive)

« All results are from a system fully-populated (99.9%+) with data

Disk Profiling

s Performance degrades 120
over course of

= There is a sharper |

performance degradation .|

Elqwkards the end of the
is

= May only want to use
portions of the disk to
maintain higher overali 70 |

performance | \\
60

50.-

Avg Write Speed
IS;I(Avg Read Speed

110 |

90 |

80

Bandwidth, MB/s

40 1 | 1 1 1 1 1 1 1
0 10 20 30 40 50 60 270 80 90 100
Position in Disk, by Percentage

10

Mahanaxar vs. Flat Files

= Requested write speed:
60 MB/s

= Ordinary filesystems
mechanisms used for
access in filesystem
testing

= Maximum theoretical

Mahanaxar Write Speed —l—
Mahanaxar Read Speed

Filesystem MWrite Speed —%—

Bandwidth, MB/s

reaq band.Width 30 Filesystem Read Speed —&—
available is ~11 MB/s
20 - oan ¢
ae——e
10 . 9____3—6'
e/el | | | |
° 0 5 10 15 20 25 30

Requested Read Speed, MB/s

11

Mahanaxar vs. Flat Files with
Constrained Access, 60 MB Elements

14

= Both systems maintain
60 MB/s requested
write speed (not shown)

= Mahanaxar has 3-4 ol
times as much spare
bandwidth for reading

s Large element size
provides best possible

circumstances for flat |
file system T

0 10 20 30 40 50 60 70 80 90 100
Position in Partition, by Percen tage

k |"., Py
12 NN I\,
| N \
A/ O

8 -

Mahanaxar Read Speed
Flat File System Read Speed

Bandwidth, MB/s

12

Mahanaxar vs. Flat Files with
Constrained Access, 1 MB Elements

s Requested write
speed still 60 MB/s

= Mahanaxar maintains
60 MB/s (not shown)

= Flat files only manage
about 35 MB/s

« Nearly half of the data is
dropped

= Flat file system
available read
bandiwidth is minimal

Bandwidth, MB/s

35 |
30 |
25 |
20 P
15 |

10

0

5 -

[——

Mahanaxar Read Speed
Flat File Write Speed
Flat File Ready Speed

Position in Partition, by Percen tage

13

Questions

= What happens when you run a commodity hard drive
24/7/365 at 99.9%+ capacity?

= How would one control ten thousand nodes
simultaneously?

= Other Questions?

14

